A-Life: Investigación sobre Evolución y Vida Artificial

Última actualización Sección Actualizada
29 de junio de 2025 Artículos La IA de Google acaba de descifrar el manual de instrucciones de la vida: así funciona AlphaGenome

Investigación sobre colaboración entre individuos para adaptarse y sobrevivir


Colección de artículos sobre evolución, vida e inteligencia artificial


Historia de esta investigación sobre vida artificial


Log de actualizaciones de este sitio Web


Sobre el Autor: Rafael Alberto Moreno Parra


Libros escritos por el autor de temas usados para la investigación

C# y .NET 9. 2025.

Lenguaje usado en las simulaciones. Dividido en las siguientes partes:

Parte 1: IDE, variables, ciclos, si condicional, funciones

Parte 2: Cadenas (strings)

Parte 3: Arreglos estáticos

Parte 4: Programación Orientada a Objetos

Parte 5: Estructuras de datos dinámicas

Parte 6: LINQ y Lambda

Parte 7: Un evaluador de expresiones algebraicas

Parte 8: Estructuras de datos de bajo nivel

Parte 9: Simulaciones

Parte 10: Algoritmos evolutivos

Parte 11: Redes Neuronales

Parte 12: Gráficos 2D

Parte 13: Gráficos en 3D

Parte 14: Animación

Parte 15: Imágenes

Descárguelo (documento en PDF y código fuente)

Capacitándose en JavaScript. 2024.

Lenguaje usado en este sitio Web para hacer demostraciones de simulaciones.

Descárguelo (documento en PDF y código fuente)

Evaluador de Expresiones Algebraicas

¿Qué es un evaluador de expresiones? Tenemos la expresión “K/(3.78 + cos(X/7.96+Y*1.554)-tan(3.7/X)+B)” almacenada en una variable de tipo Cadena (String). Necesitamos que un algoritmo resuelva esa expresión y retorne el valor cuantitativo una vez que las variables K, X, Y y B se les asignen un valor real.

Descargue Libro Versión 3 (C#, C++, Delphi, Java, JavaScript, PHP, Python, TypeScript, Visual Basic .NET)

Un uso de algoritmos genéticos para búsqueda de patrones

ISBN: 978-958-762-479-3

La detección de patrones de comportamiento en una serie de datos dada sirve para poder hacer: interpolación, el cual nos permite encontrar los valores intermedios entre dos puntos y usar esto para completar (por ejemplo para el trazado de una curva que una esos puntos); la extrapolación para poder predecir el comportamiento futuro de los datos (por supuesto, con reservas); para encontrar una curva menos costosa en cálculo con respecto a otra, y para compresión de datos, porque en vez de guardar una larga lista de datos, es mucho más corto guardar la expresión algebraica que genera esos datos.

Regresión Simbólica Y=F(X). Código fuente y Ejecutable

Regresión Simbólica Z=F(X,Y). Código fuente y Ejecutable

Segunda parte de uso de algoritmos genéticos para la búsqueda de patrones

ISBN: ISBN: 978-958-762-483-0

En esta segunda parte, el libro aborda como se resolvió el problema de manejar una gran cantidad de diversas funciones y operaciones matemáticas sin perder la eficiencia. Una vez resuelto ese punto, el paso siguiente es probar si es cierto que el algoritmo genético al tener acceso a todas esas nuevas funciones matemáticas logra mejores curvas de aproximación.